Prosthetics Sensor Package

Vrain Ahuja Nabarun Banerjee Kunal Bhatia Kyle Holben

General Background

• "Inexpensive range and force sensors for smart prosthetic limbs" (George Gollin, Pg. 7)

• But why?

Kyle Holben

What's Missing

- Actuation
- Control
- Feedback
 - Haptic

Kyle Holben

Expensive

- Over complicated
- Anything similar to natural limb
 - \$40k-\$60k
- Haptic Feedback is currently being developed

The Hero Arm

- Powered
- Muscle controlled
- Only \$6,900
 - 3D Printed
- Haptic feedback
 - Only for notifications
 Mode changes

Kyle Holben

The Scope

- Touch-Based Feedback (Haptic)
 - Contact
 - Squeeze strength
- Integratable to existing prosthetics
 - Relatively simple
- Affordable
 - Developing countries

Kyle Holben

Components

- Real Time Sensor Implementation

 Sensor package gives live feedback to the user
- Offline Data Analysis

 Python script for data analysis

Parameters

- Force on each fingertips
 - Force Sensitive Resistors were taped on to a latex glove
- Proximity of fingertips from object
 - Capacitive touch sensors taped in the front of FSR's
- Acceleration and Angular Velocity in x, y and z direction
 - The 9 axis accelerometer sensor was strapped to the shoulder

Hardware

- Haptic Feedback Driver
- Vibrating Motors
- Force Sensitive Resistors
- Capacitive Touch Sensor
- 9 Axis Accelerometer
- Spy Camera
- Speaker

Experimental Setup

- All the components were mounted onto the PCB
- The case were strapped to the shoulder.
- The FSR's and Capacitive Touch Sensors were attached on finger tips.
- Haptic feedback motors were mounted to the forearm.

Data Acquisition

- Text (.txt) files were created by the arduino with data.
- Measurements of Force, Acceleration, Time, and Photo Count were recorded every 150 milliseconds.
- The camera was triggered every time the Force reading was greater than 0.
- Python script calculated orientation angle and corrected acceleration readings.

Typing

Typing was conducted on a 2017 Macbook Pro[™] for 300 seconds. Data collected was while user sent an email.

Typing Continued

• User swiped and typed on the iPhone

Rigid Body

- Tested by lifting a bottle to drink water and maintaining a grip of the bottle. Lasted 70 seconds.
- The rigid body we used was a 24oz stainless steel water bottle with a circumference of 8.8 inches

Bicycling

- The activities included unlocking the cycle lock, mounting the lock, and gripping the handlebars during motion.
- Conducted on a standard flat bar bike and chain lock.

Soft Body

- User held a trash bag while objects were incrementally added.
- Objects include 2 water bottles, a textbook, and a metal rod. Activities lasted 80 seconds.

Tapping

- User tapped a table 60 times as fast as he could
- Conducted to test response rate of the sensor package

Capacitive Touch

Before

 Found that it was hindering user from conducting activities

 Removed capacitive touch sensors to improve data quality

- Acceleration values peaked at 10 m/s² during impulse loading situations.
- Maximum force experienced by the user was around 51.7 lbs during a jerk.
- Torques experienced by the user was around 36 Nm considering a lever arm of 12".

- Orientation data gives dynamics of upper arm.
- Model of user requirements generated from data.
- Orientation data gives insight into mounting mechanisms and stability of prosthetics.

- Tap times correspond to 0.3 seconds for both typing on the phone and the keyboard.
- Minimum sample rate 3Hz for best results must sample at twice the minimum sample rate.

Recommendations

- Sensor instrumentation had 3 main drawbacks
 - Capacitive Touch
 Sensors were not
 ergonomic on finger tips.
 - Haptic Feedbacks were not distinguishable by the user.
 - Sample rate was too low.

Conclusion

- Studied sensor packages that could bring functionality of a \$20,000 prosthetic for \$335
- Analyzed drawbacks of current prosthetics and determined rough minimum specifications for affordable prosthetics

